δ-Generalized Labeled Multi-Bernoulli Simultaneous Localization and Mapping with an Optimal Kernel-Based Particle Filtering Approach

Author:

Moratuwage Diluka,Adams Martin,Inostroza Felipe

Abstract

Under realistic environmental conditions, heuristic-based data association and map management routines often result in divergent map and trajectory estimates in robotic Simultaneous Localization And Mapping (SLAM). To address these issues, SLAM solutions have been proposed based on the Random Finite Set (RFS) framework, which models the map and measurements such that the usual requirements of external data association routines and map management heuristics can be circumvented and realistic sensor detection uncertainty can be taken into account. Rao–Blackwellized particle filter (RBPF)-based RFS SLAM solutions have been demonstrated using the Probability Hypothesis Density (PHD) filter and subsequently the Labeled Multi-Bernoulli (LMB) filter. In multi-target tracking, the LMB filter, which was introduced as an efficient approximation to the computationally expensive δ -Generalized LMB ( δ -GLMB) filter, converts its representation of an LMB distribution to δ -GLMB form during the measurement update step. This not only results in a loss of information yielding inferior results (compared to the δ -GLMB filter) but also fails to take computational advantages in parallelized implementations possible with RBPF-based SLAM algorithms. Similar to state-of-the-art random vector-valued RBPF solutions such as FastSLAM and MH-FastSLAM, the performances of all RBPF-based SLAM algorithms based on the RFS framework also diverge from ground truth over time due to random sampling approaches, which only rely on control noise variance. Further, the methods lose particle diversity and diverge over time as a result of particle degeneracy. To alleviate this problem and further improve the quality of map estimates, a SLAM solution using an optimal kernel-based particle filter combined with an efficient variant of the δ -GLMB filter ( δ -GLMB-SLAM) is presented. The performance of the proposed δ -GLMB-SLAM algorithm, referred to as δ -GLMB-SLAM2.0, was demonstrated using simulated datasets and a section of the publicly available KITTI dataset. The results suggest that even with a limited number of particles, δ -GLMB-SLAM2.0 outperforms state-of-the-art RBPF-based RFS SLAM algorithms.

Funder

US Air Force Office of Scientific Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. VB-T PHD-SLAM: efficient SLAM under heavy-tailed noise;Advanced Robotics;2024-07-30

2. Set-Type Belief Propagation With Applications to Poisson Multi-Bernoulli SLAM;IEEE Transactions on Signal Processing;2024

3. MmWave Mapping and SLAM for 5G and Beyond;Integrated Sensing and Communications;2023

4. A Faster implementation of Multi-sensor Generalized Labeled Multi-Bernoulli Filter;2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS);2022-11-21

5. An Adaptive Multi-Sensor Generalised Labelled Multi-Bernoulli Filter for Linear Gaussian Models;2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS);2022-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3