CFD Modelling of Gas-Solid Reactions: Analysis of Iron and Manganese Oxides Reduction with Hydrogen

Author:

Khama Mopeli1,Reynolds Quinn12ORCID

Affiliation:

1. Mintek, 200 Malibongwe, Randburg 2194, South Africa

2. Department of Chemical Engineering, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa

Abstract

Metallurgical processes are characterized by a complex interplay of heat and mass transfer, momentum transfer, and reaction kinetics, and these interactions play a crucial role in reactor performance. Integrating chemistry and transport results in stiff and non-linear equations and longer time and length scales, which ultimately leads to a high computational expense. The current study employs the OpenFOAM solver based on a fictitious domain method to analyze gas-solid reactions in a porous medium using hydrogen as a reducing agent. The reduction of oxides with hydrogen involves the hierarchical phenomena that influence the reaction rates at various temporal and spatial scales; thus, multi-scale models are needed to bridge the length scale from micro-scale to macro-scale accurately. As a first step towards developing such capabilities, the current study analyses OpenFOAM reacting flow methods in cases related to hydrogen reduction of iron and manganese oxides. Since reduction of the oxides of interest with hydrogen requires significant modifications to the current industrial processes, this model can aid in the design and optimization. The model was verified against experimental data and the dynamic features of the porous medium observed as the reaction progresses is well captured by the model.

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Mathematics,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3