Replacing Fossil Carbon in the Production of Ferroalloys with a Focus on Bio-Based Carbon: A Review

Author:

Sommerfeld MarcusORCID,Friedrich BerndORCID

Abstract

The production of ferroalloys and alloys like ferronickel, ferrochromium, ferromanganese, silicomanganese, ferrosilicon and silicon is commonly carried out in submerged arc furnaces. Submerged arc furnaces are also used to upgrade ilmenite by producing pig iron and a titania-rich slag. Metal containing resources are smelted in this furnace type using fossil carbon as a reducing agent, which is responsible for a large amount of direct CO2 emissions in those processes. Instead, renewable bio-based carbon could be a viable direct replacement of fossil carbon currently investigated by research institutions and companies to lower the CO2 footprint of produced alloys. A second option could be the usage of hydrogen. However, hydrogen has the disadvantages that current production facilities relying on solid reducing agents need to be adjusted. Furthermore, hydrogen reduction of ignoble metals like chromium, manganese and silicon is only possible at very low H2O/H2 partial pressure ratios. The present article is a comprehensive review of the research carried out regarding the utilization of bio-based carbon for the processing of the mentioned products. Starting with the potential impact of the ferroalloy industry on greenhouse gas emissions, followed by a general description of bio-based reducing agents and unit operations covered by this review, each following chapter presents current research carried out to produce each metal. Most studies focused on pre-reduction or solid-state reduction except the silicon industry, which instead had a strong focus on smelting up to an industrial-scale and the design of bio-based carbon for submerged arc furnace processes. Those results might be transferable to other submerged arc furnace processes as well and could help to accelerate research to produce other metals. Deviations between the amount of research and scale of tests for the same unit operation but different metal resources were identified and closer cooperation could be helpful to transfer knowledge from one area to another. Life cycle assessment to produce ferronickel and silicon already revealed the potential of bio-based reducing agents in terms of greenhouse gas emissions, but was not carried out for other metals until now.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3