Automatic Ship Detection Using the Artificial Neural Network and Support Vector Machine from X-Band Sar Satellite Images

Author:

Hwang Jeong-In,Jung Hyung-SupORCID

Abstract

In this paper, an automatic ship detection method using the artificial neural network (ANN) and support vector machine (SVM) from X-band SAR satellite images is proposed. When using machine learning techniques, the most important points to consider are (i) defining the proper input neurons and (ii) selecting the correct training data. We focused on generating two optimal input data neurons that (i) strengthened ship targets and (ii) mitigated noise effects by image processing techniques, including median filtering, multi-looking, etc. The median filter and multi-look operations were used to reduce the background noise, and the median filter operation was also used to remove ships in an image in order to maximize the difference between the pixel values of ships and the sea. Through the root-mean-square difference calculation, most ship targets, even including small ships, were emphasized in the images. We tested the performance of the proposed method using X-band high-resolution SAR images including COSMO-SkyMed, KOMPSAT-5, and TerraSAR-X images. An intensity difference map and a texture difference map were extracted from the X-band SAR single-look complex (SLC) images, and then, the maps were used as input neurons for the ANN and SVM machine learning techniques. Finally, we created ship-probability maps through the machine learning techniques. To validate the ANN and SVM results, optimal threshold values were obtained by using the statistical approach and then used to identify ships from the ship-probability maps. Consequently, the level of recall achieved was greater than 90% in most cases. This means that the proposed method enables the detection of most ship targets from X-band SAR images with a reduced number of false detections from negative effects.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference57 articles.

1. AUTOMATIC SHIP DETECTION IN SINGLE-POL SAR IMAGES USING TEXTURE FEATURES IN ARTIFICIAL NEURAL NETWORKS

2. Synthetic Aperture Radar Processing;Franceschetti,2018

3. Automatic Approach to Ship Detection in Spaceborne Synthetic Aperture Radar Imagery: An Assessment of Ship Detection Capability Using RADARSAT;Askari,2000

4. A complete processing chain for ship detection using optical satellite imagery

5. A Novel Hierarchical Method of Ship Detection from Spaceborne Optical Image Based on Shape and Texture Features

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3