Snow-Covered Soil Temperature Retrieval in Canadian Arctic Permafrost Areas, Using a Land Surface Scheme Informed with Satellite Remote Sensing Data

Author:

Marchand Nicolas,Royer Alain,Krinner GerhardORCID,Roy Alexandre,Langlois Alexandre,Vargel Céline

Abstract

High-latitude areas are very sensitive to global warming, which has significant impacts on soil temperatures and associated processes governing permafrost evolution. This study aims to improve first-layer soil temperature retrievals during winter. This key surface state variable is strongly affected by snow’s geophysical properties and their associated uncertainties (e.g., thermal conductivity) in land surface climate models. We used infrared MODIS land-surface temperatures (LST) and Advanced Microwave Scanning Radiometer for EOS (AMSR-E) brightness temperatures (Tb) at 10.7 and 18.7 GHz to constrain the Canadian Land Surface Scheme (CLASS), driven by meteorological reanalysis data and coupled with a simple radiative transfer model. The Tb polarization ratio (horizontal/vertical) at 10.7 GHz was selected to improve snowpack density, which is linked to the thermal conductivity representation in the model. Referencing meteorological station soil temperature measurements, we validated the approach at four different sites in the North American tundra over a period of up to 8 years. Results show that the proposed method improves simulations of the soil temperature under snow (Tg) by 64% when using remote sensing (RS) data to constrain the model, compared to model outputs without satellite data information. The root mean square error (RMSE) between measured and simulated Tg under the snow ranges from 1.8 to 3.5 K when using RS data. Improved temporal monitoring of the soil thermal state, along with changes in snow properties, will improve our understanding of the various processes governing soil biological, hydrological, and permafrost evolution.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3