Identifying Tree-Related Microhabitats in TLS Point Clouds Using Machine Learning

Author:

Rehush Nataliia,Abegg Meinrad,Waser Lars,Brändli Urs-Beat

Abstract

Tree-related microhabitats (TreMs) play an important role in maintaining forest biodiversity and have recently received more attention in ecosystem conservation, forest management and research. However, TreMs have until now only been assessed by experts during field surveys, which are time-consuming and difficult to reproduce. In this study, we evaluate the potential of close-range terrestrial laser scanning (TLS) for semi-automated identification of different TreMs (bark, bark pockets, cavities, fungi, ivy and mosses) in dense TLS point clouds using machine learning algorithms, including deep learning. To classify the TreMs, we applied: (1) the Random Forest (RF) classifier, incorporating frequently used local geometric features and two additional self-developed orientation features, and (2) a deep Convolutional Neural Network (CNN) trained using rasterized multiview orthographic projections (MVOPs) containing top view, front view and side view of the point’s local 3D neighborhood. The results confirmed that using local geometric features is beneficial for identifying the six groups of TreMs in dense tree-stem point clouds, but the rasterized MVOPs are even more suitable. Whereas the overall accuracy of the RF was 70%, that of the deep CNN was substantially higher (83%). This study reveals that close-range TLS is promising for the semi-automated identification of TreMs for forest monitoring purposes, in particular when applying deep learning techniques.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference75 articles.

1. State of Europe’s Forests 2011,2011

2. Rot holes create key microhabitats for epiphytic lichens and bryophytes on beech (Fagus sylvatica)

3. Tree microhabitats as indicators of bird and bat communities in Mediterranean forests

4. Habitat trees: Key elements for forest biodiversity;Bütler,2013

5. A formula for assessing the ecological value of trees;Franks;J. Arboric.,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3