Confronting Soil Moisture Dynamics from the ORCHIDEE Land Surface Model With the ESA-CCI Product: Perspectives for Data Assimilation

Author:

Raoult Nina,Delorme Bertrand,Ottlé Catherine,Peylin Philippe,Bastrikov Vladislav,Maugis PascalORCID,Polcher Jan

Abstract

Soil moisture plays a key role in water, carbon and energy exchanges between the land surface and the atmosphere. Therefore, a better representation of this variable in the Land-Surface Models (LSMs) used in climate modelling could significantly reduce the uncertainties associated with future climate predictions. In this study, the ESA-CCI soil moisture (SM) combined product (v4.2) has been confronted to the simulated top-first layers/cms of the ORCHIDEE LSM (the continental part of the IPSL Earth System Model) for the years 2008-2016, to evaluate its potential to improve the model using data assimilation techniques. The ESA-CCI data are first rescaled to match the climatology of the model and the signal representative depth is selected. Results are found to be relatively consistent over the first 20 cm of the model. Strong correlations found between the model and the ESA-CCI product show that ORCHIDEE can adequately reproduce the observed SM dynamics. As well as considering two different atmospheric forcings to drive the model, we consider two different model parameterizations related to the soil resistance to evaporation. The correlation metric is shown to be more sensitive to the choice of meteorological forcing than to the choice of model parameterization. Therefore, the metric is not optimal in highlighting structural deficiencies in the model. In contrast, the temporal autocorrelation metric is shown to be more sensitive to this model parameterization, making the metric a potential candidate for future data assimilation experiments.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3