IoT-Based Data Mining Framework for Stability Assessment of the Laser-Directed Energy Deposition Process

Author:

Hartmann Sebastian12ORCID,Vykhtar Bohdan3,Möbs Nele3,Kelbassa Ingomar34,Mayr Peter1ORCID

Affiliation:

1. Materials Engineering of Additive Manufacturing, Technical University of Munich, Freisinger Landstraße 52, 85748 Munich, Germany

2. Siemens AG, Frauenauracher Straße 80, 91056 Erlangen, Germany

3. Fraunhofer Research Institution for Additive Manufacturing Technologies IAPT, 21029 Hamburg, Germany

4. Industrialization of Smart Materials, Technical University of Hamburg, Eißendorfer Straße 40, 21073 Hamburg, Germany

Abstract

Additive manufacturing processes are prone to production errors. Specifically, the unique physical conditions of Laser-Directed Energy Deposition (DED-L) lead to unexpected process anomalies resulting in subpar part quality. The resulting costs and lack of reproducibility are two major barriers hindering a broader adoption of this innovative technology. Combining sensor data with data from relevant steps before and after the production process can lead to an increased understanding of when and why these process anomalies occur. In the present study, an IoT-based data mining framework is presented to assess the stability of processing Ti6Al4V on an industrial-grade DED-L machine. The framework employs an edge-cloud computing methodology to collect data efficiently and securely from various steps in the part lifecycle. During manufacturing, multiple sensors are employed to monitor the essential process characteristics in situ. Mechanical properties of the 160 printed specimens were obtained using appropriate destructive testing. All data are stored on a central database and can be accessed via the web for data analytics. The results prove the successful implementation of the proposed IoT framework but also indicate a lack of process stability during manufacturing. The occurring part errors can only be partially correlated with anomalies in the in situ sensor data.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3