The Metallurgy of Additive Manufacturing: Potentials and Challenges towards Industrialisation

Author:

Mayr P,Rauh S,Matheson G,Rotzsche S,Hartmann S,Kabliman E

Abstract

Abstract The present paper discusses the potential and challenges of processing metallic materials using additive manufacturing. Particular focus is given to laser powder bed fusion (PBF-LB/M) and the use of traditional alloy powders such as Al alloys and Ni-based superalloys, as well as novel materials such as metal-matrix composites. The research includes the improvement of the processability of these alloys using PBF-LB/M and optimizing material properties such as strength, creep resistance, and thermal conductivity of printed parts for various applications. Another important aspect presented within this manuscript is the digital representation of advanced manufacturing systems to improve manufacturability and enable advanced quality control. Herein, the development of a digital twin through in-situ process monitoring for the direct energy deposition process of laser metal deposition is presented. In the last part, the future of materials development for additive manufacturing is discussed, focusing on applying material computational techniques. All demonstrated examples result from the successful cooperation between the Chair of Materials Engineering of Additive Manufacturing, TUM, and its industrial and research partners.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3