Satisfaction with Rooftop Photovoltaic Systems and Feed-in-Tariffs Effects on Energy and Environmental Goals in Jordan

Author:

Al-Refaie Abbas1ORCID,Lepkova Natalija2ORCID

Affiliation:

1. Department of Industrial Engineering, University of Jordan, Amman 11942, Jordan

2. Department of Construction Management and Real Estate, Vilnius Gediminas Technical University (VILNIUSTECH), 10223 Vilnius, Lithuania

Abstract

Rooftop photovoltaic (RPV) systems are valuable clean-energy-efficient technology that facilitates the transition toward energy sustainability in residential buildings. Hence, the government in Jordan implemented the feed-in-tariffs (FiT) policy to motivate residents’ willingness to install RPV systems. However, the quality of RPV products and services is a key determinant of social acceptance to install RPV systems. Hence, manufacturers and suppliers are working closely with adopters to design and manufacture RPV systems that meet or exceed their expectations. Still, there is a need to develop a quantitative assessment to examine the effects of this FiT policy and the quality of RPV systems on energy security. This study, therefore, develops a system dynamics model to examine the effects of the FiT policy and the quality of RPV products and services on social acceptance to install RPV systems. To achieve this objective, several hypotheses were established related to the main model factors, including the quality of services, complaint reduction, performance ratio, payback period and warranty, and FiT price, with a willingness to install RPV systems. Then, a system dynamics model was constructed. The simulation results reveal the significant factor that impacts energy goals. Moreover, from the end of the year 2030 to the end of 2050, RPV installations, generated power, and CO2 emission reductions are expected to increase from 0.681 GW to 72.83 GW, from 1.07 to 125.74 TWh, and from 0.680 to 79.59 million tons of CO2, respectively. Optimization was performed to maximize the three objectives under the uncertainty of key model variables. The optimal factor values can significantly increase the current energy goals by about 20%. In conclusion, collecting, analyzing, and evaluating adopter input and feedback on RPV systems regarding their design and technology and manufacturing and the post-services of RPV systems significantly influence energy sustainability in residential buildings. In addition, government support through investing in the FiT policy can boost RPV installations in residential buildings.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3