Effects of a Detached Eddy Simulation-Curvature Correction (DES-CC) Turbulence Model on the Unsteady Flows of Side Channel Pumps

Author:

Liu Runshi,Zhang FanORCID,Chen Ke,Wang Yefang,Yuan Shouqi,Xu Ruihong

Abstract

A side channel pump is a pump with a high head and a small flow that is widely used in various industrial fields. Many scientists have studied the hydraulic performance, pressure fluctuation characteristics, and gas-liquid mixed transport characteristics of this type of pump. However, these studies mainly focused on the single-stage impeller of the side channel pump, without considering the inter-stage connection channel and the multistage timing effect. These characteristics affect the hydraulic performance and pressure-pulsation characteristics of the side channel pump. Therefore, we carried out a numerical simulation and an experimental comparison on the multistage side channel pump to explore its flow characteristics during the stages. This study focused on the influence of different turbulence models on the numerical simulation of multistage side channel pumps. Shear stress transport (SST), detached eddy simulation (DES), and detached eddy simulation-curvature correction (DES-CC) turbulence models were selected for consideration. By studying the pressure and velocity streamline distribution, the turbulent kinetic energy, and the shape and volume of the vortex core area simulated by the three models, we concluded that the DES-CC model, when compared to the other models, can more fully reflect the vortex characteristics and the simulation results that are closer to the experimental data. The results of this study can be used as the basis for future research on multistage side channel pumps.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Ranking the Top of the List for Science and Technology Projects of Yunnan Province

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference25 articles.

1. Evaluation of the Flow inside a Side Channel Pump by the Application of an Analytical Model and CFD;Böhle;Fluids Eng. Div. Summer Meet.,2009

2. High vacuum side channel pump working against atmosphere

3. Optimization of the high vacuum side channel pump;Shirinov;Proceedings of the Seventh International Conference on Compressors and Their Systems,2011

4. Optimisation of the high vacuum side channel pump;Shirinov,2011

5. A Systematical Study of the Influence of Blade Number on the Performance of a Side Channel Pump

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3