Experimental and Numerical Evaluation of Affinity Law of Single-Stage and Multistage Side Channel Pumps at Variable Rotating Speeds

Author:

Chen Ke1,Zhang Fan1,Liu Runshi1,Adu-Pokua Kofi Asamoah1,Yuan Shouqi1,Hong Qiuhong2

Affiliation:

1. National Research Center of Pumps, Jiangsu University , Zhenjiang 212013, China

2. Kunming Jiahe Science & Technology Co., Ltd. , Kunming 650000, China

Abstract

Abstract In the actual operation of pumps, regulating the rotating speed of the pump based on the affinity law through variable speed drives is deemed as a prudent and convenient approach to mitigate energy loss. However, the multistage side channel pump is composed of one centrifugal impeller at the first stage and one or more side channel structures, the applicability of affinity law to this composite structure has not been confirmed. Three schemes with different suction angles of single-stage and one multistage side channel pump were investigated under different rotating speeds through numerical and experimental analysis. The findings elucidated that the single-stage side channel pumps exhibit a proportionate relationship to the affinity law, regardless of how the geometry varies. The numerical work was validated by the comparison between the simulated result and the tested result of the multistage side channel pump under two rotating speeds. Noticeably, the entire performance of the multistage side channel pump conforms to the affinity law, which has the same phenomenon as the single-stage side channel pump. The entropy production causing dissipation of turbulence flows in each stage exhibits a similar tendency as the overall head. As a result, the vortex distribution in average time and transient moment are almost analogous in the impeller of each stage under corresponding flow points. This briefly explains composite structures could be considered as pumps in series regardless of their composition. The outcome of this research could offer a theoretical basis for energy-saving methods of side channel pumps.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3