A Tesla Valve as a Micromixer for Fe3O4 Nanoparticles

Author:

Liosis ChristosORCID,Sofiadis George,Karvelas EvangelosORCID,Karakasidis TheodorosORCID,Sarris IoannisORCID

Abstract

A large number of microfluidic applications are based on effective mixing. In the application of water purification, the contaminated water needs to be effectively mixed with a solution that is loaded with nanoparticles. In this work, the Tesla valve was used as a micromixer device in order to evaluate the effect of this type of geometry on the mixing process of two streams. For this reason, several series of simulations were performed in order to achieve an effective mixing of iron oxide nanoparticles and contaminated water in a duct. In the present work, a stream loaded with Fe3O4 nanoparticles and a stream with contaminated water were numerically studied for various inlet velocity ratios and initial concentrations between the two streams. The Navier–Stokes equations were solved for the water flow and the discrete motion of particles was evaluated by the Lagrangian method. Results indicate that the Tesla valve can be used as a micromixer since mixing efficiency reached up to 63% for Vp/Vc = 20 under various inlet nanoparticles rates for the geometry of the valve that was used in this study.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3