Computational and experimental microfluidics: Total analysis system for mixing, sorting, and concentrating particles and cells

Author:

Coral David1ORCID,Attard Matthew1ORCID,Pedrol Eric2ORCID,Solé Rosa Maria1ORCID,Díaz Francesc1ORCID,Aguiló Magdalena1ORCID,Mateos Xavier1ORCID

Affiliation:

1. University Rovira i Virgili (URV), Physics and Crystallography of Materials (FiCMA) 1 , Marcel⋅lí Domingo 1, 43007 Tarragona, Spain

2. SRCiT - Service for Scientific and Technical Resources Campus Sescelades, N2 building, Universitat Rovira i Virgili 2 , Països Catalans 26, Av. 43007 Tarragona, Spain

Abstract

Body fluids can potentially indicate the presence of non-small cancer cells. Studying these fluids is an emerging field that could be crucial for cancer detection and monitoring treatment effectiveness. Meanwhile, the examination of fluids on a microscopic level is part of the field of microfluidics. This study focuses on the development of a total analysis system that consists of various interconnected structures that are designed to mix, classify, concentrate, and isolate particles in fluids that mimic the behavior of cancer and normal cells. Using the COMSOL Multiphysics software, the device's performance was optimized to use a pressure input of 35 kPa for water or serum and 29.4 kPa for a mixture of liquid and serum samples, which are the optimal pressure inputs. The numerical models were validated by experiments using two types of polystyrene particles, with diameters of 5 and 20 μm. Moreover, the developed system was applied to monitor the behavior of red blood cells. The microfluidic chip is capable of addressing several challenges through visual detections, including mixing tests of two fluids with similar densities, proper particle size classification using Dean flow fractionation, and single-step recovery of large, labeled particles. Finally, the collected particles were examined using an environmental scanning electron microscope to determine their size, and the results demonstrated that successful size separation was achieved, with particles around 20 μm completely separated from the smaller ones.

Funder

HORIZON EUROPE Marie Sklodowska-Curie Actions

Ministerio de Ciencia e Innovación

Diputacio de Tarragona

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3