Assessing Forest Ecosystems across the Vertical Edge of the Mid-Latitude Ecotone Using the BioGeoChemistry Management Model (BGC-MAN)

Author:

Song CholhoORCID,Pietsch Stephan A.,Kim Moonil,Cha SungeunORCID,Park Eunbeen,Shvidenko Anatoly,Schepaschenko DmitryORCID,Kraxner FlorianORCID,Lee Woo-Kyun

Abstract

The mid-latitude ecotone (MLE)—a transition zone between boreal and temperate forests, which includes the regions of Northeast Asia around 30°–60° N latitudes—delivers different ecosystem functions depending on different management activities. In this study, we assessed forest volume and net primary productivity changes in the MLE of Northeast Asia under different ecological characteristics, as well as various current management activities, using the BioGeoChemistry Management Model (BGC-MAN). We selected five pilot sites for pine (Scots pine and Korean red pine; Pinus sylvestris and P. densiflora), oak (Quercus spp.), and larch forests (Dahurian larch and Siberian larch; Larix gmelinii and L. sibirica), respectively, which covered the transition zone across the MLE from Lake Baikal, Russia to Kyushu, Japan, including Mongolia, Northeast China, and the Korean Peninsula. With site-specific information, soil characteristics, and management descriptions by forest species, we established their management characteristics as natural preserved forests, degraded forests, sandy and cold forest stands, and forests exposed to fires. We simulated forest volume (m3) and net primary productivity (Mg C ha−1) during 1960–2005 and compared the results with published literature. They were in the range of those specified in previous studies, with some site-levels under or over estimation, but unbiased estimates in their mean values for pine, oak, and larch forests. Annual rates of change in volume and net primary productivity differed by latitude, site conditions, and climatic characteristics. For larch forests, we identified a high mountain ecotype which warrants a separate model parameterization. We detected changes in forest ecosystems, explaining ecological transition in the Northeast Asian MLE. Under the transition, we need to resolve expected problems through appropriate forest management and social efforts.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3