Application of Multimodel Superensemble Technique on the TIGGE Suite of Operational Models

Author:

Bhardwaj AmitORCID,Kumar VinayORCID,Sharma AnjaliORCID,Sinha Tushar,Singh Surendra Pratap

Abstract

One widely recognized portal which provides numerical weather prediction forecasts is “The Observing System Research and Predictability Experiment” (THORPEX) Interactive Grand Global Ensemble (TIGGE), an initiative of WMO project. This data portal provides forecasts from 1 to 16 days (2 weeks in advance) for many variables such as rainfall, winds, geopotential height, temperature, and relative humidity. These weather forecasting centers have delivered near-real-time (with a delay of 48 hours) ensemble prediction system data to three TIGGE data archives since October 2006. This study is based on six years (2008–2013) of daily rainfall data by utilizing output from six centers, namely the European Centre for Medium-Range Weather Forecasts, the National Centre for Environmental Prediction, the Center for Weather Forecast and Climatic Studies, the China Meteorological Agency, the Canadian Meteorological Centre, and the United Kingdom Meteorological Office, and make consensus forecasts of up to 10 days lead time by utilizing the multimodal multilinear regression technique. The prediction is made over the Indian subcontinent, including the Indian Ocean. TRMM3B42 daily rainfall is used as the benchmark to construct the multimodel superensemble (SE) rainfall forecasts. Based on statistical ability ratings, the SE offers a better near-real-time forecast than any single model. On the one hand, the model from the European Centre for Medium-Range Weather Forecasting and the UK Met Office does this more reliably over the Indian domain. In a case of Indian monsoon onset, 05 June 2014, SE carries the lowest RMSE of 8.5 mm and highest correlation of 0.49 among six member models. Overall, the performance of SE remains better than any individual member model from day 1 to day 10.

Publisher

MDPI AG

Reference28 articles.

1. Lead time for medium range prediction of the dry spell of monsoon using multi-models

2. Improving multimodel medium range forecasts over the Greater Horn of Africa using the FSU superensemble

3. Weather and Seasonal Climate Prediction of Asian Summer Monsoon. Review Topic B1a: Numerical Modeling-Forecasthttp://danida.vnu.edu.vn/cpis/files/Refs/Seasonal_FCS/WEATHER%20AND%20SEASONAL%20CLIMATE%20PREDICTION%20OF%20ASIAN%20SUMMER%20MONSOON.pdf

4. Two Decades of Medium-Range Weather Forecasting in India: National Centre for Medium-Range Weather Forecasting;Sikka,2009

5. REPRESENTING MODEL UNCERTAINTY IN WEATHER AND CLIMATE PREDICTION

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3