REPRESENTING MODEL UNCERTAINTY IN WEATHER AND CLIMATE PREDICTION

Author:

Palmer T.N.1,Shutts G.J.1,Hagedorn R.1,Doblas-Reyes F.J.1,Jung T.1,Leutbecher M.1

Affiliation:

1. European Centre for Medium-Range Weather Forecasts (ECMWF), Shinfield Park, Reading RG2 9AX, United Kingdom;

Abstract

▪ Abstract  Weather and climate predictions are uncertain, because both forecast initial conditions and the computational representation of the known equations of motion are uncertain. Ensemble prediction systems provide the means to estimate the flow-dependent growth of uncertainty during a forecast. Sources of uncertainty must therefore be represented in such systems. In this paper, methods used to represent model uncertainty are discussed. It is argued that multimodel and related ensembles are vastly superior to corresponding single-model ensembles, but do not provide a comprehensive representation of model uncertainty. A relatively new paradigm is discussed, whereby unresolved processes are represented by computationally efficient stochastic-dynamic schemes.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3