Curvature Weighted Decimation: A Novel, Curvature-Based Approach to Improved Lidar Point Decimation of Terrain Surfaces

Author:

Schrum Paul T.1,Jameson Carter D.2,Tateosian Laura G.3ORCID,Blank Gary B.1,Wegmann Karl W.34,Nelson Stacy A. C.1ORCID

Affiliation:

1. Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA

2. Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA

3. Center for Geospatial Analytics, North Carolina State University, Raleigh, NC 27695, USA

4. Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA

Abstract

Increased availability of QL1/QL2 Lidar terrain data has resulted in large datasets, often including large quantities of redundant points. Because of these large memory requirements, practitioners often use decimation to reduce the number of points used to create models. This paper introduces a novel approach to improve decimation, thereby reducing the total count of ground points in a Lidar dataset while retaining more accuracy than Random Decimation. This reduction improves efficiency of downstream processes while maintaining output quality nearer to the undecimated dataset. Points are selected for retention based on their discrete curvature values computed from the mesh geometry of the TIN model of the points. Points with higher curvature values are preferred for retention in the resulting point cloud. We call this technique Curvature Weighted Decimation (CWD). We implement CWD in a new free, open-source software tool, CogoDN, which is also introduced in this paper. We evaluate the effectiveness of CWD against Random Decimation by comparing the resulting introduced error values for the two kinds of decimation over multiple decimation percentages, multiple statistical types, and multiple terrain types. The results show that CWD reduces introduced error values over Random Decimation when 15 to 50% of the points are retained.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Business and International Management

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Алгоритм оценки точности полигональных TIN-поверхностей, получаемых из разреженных облаков точек;Vestnik SSUGT;2024-06-27

2. Lidar-based classification and detection system for drivable area on roads;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-04-16

3. Open-Source Framework for Creation of Canopy Height Models from UAS-Lidar Data;IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium;2023-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3