Lidar-based classification and detection system for drivable area on roads

Author:

Wei Rongkun1ORCID,Wei Yunsong1,Xiao Yingxue1,Ma Rong1

Affiliation:

1. School of Mechanics and Transportation, Southwest Forestry University, Kunming, China

Abstract

Separating the drivable and non- drivable areas on semi-structured and unstructured roads is an important task for autonomous vehicles to safely and avoid obstacles. Semi structured and unstructured roads have different intensities, normal vector angles, and curvature information than the background, and this paves the way for the design and development of an efficient detection system for drivable areas on this roads. In this paper, an effective method for detecting drivable areas is proposed that is based on important indicators of an experimental vehicles. This method calculate the information gain of features is calculated firstly to determine the sequence of feature processing. On the basis of this sequence calculate the maximum inter-class variance of features, and combined with the specific indicators of the experimental vehicle to realize the detection of drivable areas. Finally, the performance of the method is evaluated in terms of average precision, recall, and detection accuracy, and compared with the performance of existing road detection methods, including the K-nearest-neighbors classifier and the random forest classifier methods. The experimental results show that the average precision, recall, and detection accuracy of the system are 96.19%, 96.89%, and 96.72%, respectively. The method proposed here can effectively identify and classify drivable areas on semi structured and unstructured roads.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3