Long-Term Anaerobic Digestion of Seasonal Fruit and Vegetable Waste Using a Leach-Bed Reactor Coupled to an Upflow Anaerobic Sludge Bed Reactor

Author:

Kalogiannis Achilleas1,Diamantis Vasileios1,Eftaxias Alexandros1ORCID,Stamatelatou Katerina1ORCID

Affiliation:

1. Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, GR 67132 Xanthi, Greece

Abstract

Fruit and vegetable waste (FVW) generated locally in open (public or wholesale) markets is a valuable resource and should not be considered as waste. The anaerobic digestion (AD) of FVW can minimize landfill disposal and generate renewable energy, thus decreasing greenhouse gas emissions. Moreover, the digestate after the AD of FVW, devoid of antibiotics and animal fats in manure and food waste, may have a high fertilizing value. In this study, FVW mixtures were composed to mimic the real FVW generated in Mediterranean open markets annually. The first goal was to evaluate the biochemical methane potential (BMP) of different size fractions resulting from FVW grinding. Indeed, the FVW was ground and separated into two size fractions, 0–4 mm and 4–10 mm, respectively. The 0–4 mm fraction exhibited a lower BMP but a higher rate constant than the 4–10 mm fraction. The second goal was to first evaluate the BMP of the lumped fraction of FVW after grinding (0–10 mm) via BMP assays and then feed it to a mesophilic two-stage leaching-bed reactor (LBR)-upflow anaerobic sludge bed (UASB) system for almost one year. The BMP of the FVW ranged between 406 and 429 L kg−1 of volatile solids (VS) independently of the FVW production season. The system received an average organic loading rate (OLR) of 3.1 ± 0.7 g VS L−1 d−1. During operation, the LBR gradually transited from acidogenic to methanogenic, and the overall methane yield of the system increased from 265–278 to 360–375 L kg−1 VS, respectively. The proposed technology does not require water addition or liquid digestate removal. Compared to the continuous stirred tank reactor (CSTR) digester technology, the LBR/UASB system is suitable for the anaerobic digestion of FVW. The results of this study can be further used to upscale the proposed technology and contribute to the societal need for affordable and clean energy included in the Sustainable Development Goals (SDGs).

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3