Multi-Phase Joint-Angle Trajectory Generation Inspired by Dog Motion for Control of Quadruped Robot

Author:

Choi JungsuORCID

Abstract

Quadruped robots are receiving great attention as a new means of transportation for various purposes, such as military, welfare, and rehabilitation systems. The use of four legs enables a robustly stable gait; compared to the humanoid robots, the quadruped robots are particularly advantageous in improving the locomotion speed, the maximum payload, and the robustness toward disturbances. However, the more demanding conditions robots are exposed to, the more challenging the trajectory generation of robotic legs becomes. Although various trajectory generation methods (e.x., central pattern generator, finite states machine) have been developed for this purpose, these methods have limited degrees of freedom with respect to the gait transition. The conventional methods do not consider the transition of the gait phase (i.e., walk, amble, trot, canter, and gallop) or use a pre-determined fixed gait phase. Additionally, some research teams have developed locomotion algorithms that take into account the transition of the gait phase. Still, the transition of the gait phase is limited (mostly from walking to trot), and the transition according to gait speed is not considered. In this paper, a multi-phase joint-angle trajectory generation algorithm is proposed for the quadruped robot. The joint-angles of an animal are expressed as a cyclic basis function, and an input to the basis function is manipulated to realize the joint-angle trajectories in multiple gait phases as desired. To control the desired input of a cyclic basis function, a synchronization function is formulated, by which the motions of legs are designed to have proper ground contact sequences with each other. In the gait of animals, each gait phase is optimal for a certain speed, and thus transition of the gait phases is necessary for effective increase or decrease in the locomotion speed. The classification of the gait phases, however, is discrete, and thus the resultant joint-angle trajectories may be discontinuous due to the transition. For the smooth and continuous transition of gait phases, fuzzy logic is utilized in the proposed algorithm. The proposed methods are verified by simulation studies.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

1. The Dynamics of Legged Locomotion: Models, Analyses, and Challenges

2. BigDog Overview (Updated March 2010)https://www.youtube.com/watch?v=cNZPRsrwumQ

3. LS3-Legged Squad Support Systemhttps://www.youtube.com/watch?v=R7ezXBEBE6U

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Legged Robots in the Agricultural Context: Analysing Their Traverse Capabilities and Performance;IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society;2023-10-16

2. Bio-Inspired Gait Transitions for Quadruped Locomotion;IEEE Robotics and Automation Letters;2023-10

3. A New Trajectory Tracking Control Method for Fully Electrically Driven Quadruped Robot;Machines;2022-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3