Fretting Fatigue Performance of Unidirectional, Laminated Carbon Fibre Reinforced Polymer Straps at Elevated Service Temperature

Author:

Stankovic Danijela,Bisby Luke A.,Triantafyllidis Zafiris,Terrasi Giovanni P.

Abstract

The fretting fatigue performance of laminated, unidirectional (UD), pin-loaded, carbon fibre-reinforced polymer (CFRP) straps that can be used as bridge hanger cables was investigated at a sustained service temperature of 60 °C. The aim of this paper is to elucidate the influence of the slightly elevated service temperature on the tensile fatigue performance of CFRP straps. First, steady state thermal tests at ambient temperature and at 60 °C are presented, in order to establish the behaviour of the straps at these temperatures. These results indicated that the static tensile performance of the straps is not affected by the increase in temperature. Subsequently, nine upper stress levels (USLs) between 650 and 1400 MPa were chosen in order to establish the S–N curve at 60 °C (frequency 10 Hz; R = 0.1) and a comparison with an existing S–N curve at ambient temperature was made. In general, the straps fatigue limit was slightly decreased by temperature, up to 750 MPa USL, while, for the higher USLs, the straps performed slightly better as compared with the S–N curve at ambient temperature.

Funder

Swiss Federal Laboratories for Materials Science and Technology

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference47 articles.

1. A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties

2. Carbon Fibers;Pusch,2018

3. Resource consumption and its drivers;Ashby,2021

4. Infrastructure Applications of Fiber-Reinforced Polymer Composites;GangaRao,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3