Investigations on the Fatigue Behaviour of 3D-Printed Continuous Carbon Fibre-Reinforced Polymer Tension Straps

Author:

Vidrih Tadej,Winiger Peter,Triantafyllidis Zafiris,Ott ValentinORCID,Terrasi Giovanni P.

Abstract

The focus of this research is an investigation on the fatigue behaviour of unidirectional 3D-printed continuous carbon fibre-reinforced polymer (CFRP) tension straps with a polyamide matrix (PA12). Conventionally produced tension straps are becoming established components in the mechanical as well as the civil engineering sector, e.g., as rigging systems for sailing boats and cranes and—recently introduced—as network arch bridge hangers. All these structures are subjected to high fatigue loads, and although it is commonly reported that carbon fibre-reinforced polymers show excellent fatigue resistance, there is limited understanding of the behaviour of CFRP loop elements under such loads, especially in combination with fretting at the attachment points. Research on this topic was performed at Empa in the past decade on thermoset CFRP straps, but never before with 3D-printed continuous CFRP straps with a thermoplastic matrix. This paper examines an additive manufacturing and post-consolidation method for producing the straps and presents initial results on their fatigue performance, which show that the fatigue endurance limit of the investigated 3D-printed and post-consolidated CFRP strap design is acceptable, when compared to steel tendons. However, it is still 20% lower than conventionally produced CFRP straps using out-of-autoclave unidirectional carbon fibre prepregs. The reasons for these findings and potential future improvements are discussed.

Funder

The Strategic Focus Area Projects of the Swiss ETH domain

LIBRI of EMPA-EAWAG

ETH domain SFA Advanced Manufacturing

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference37 articles.

1. Sustainability of Carbon Fiber-Reinforced Polymers in Construction

2. The influence of corrosion on the life of steel ropes and prediction of their decommissioning

3. Carbon Fiber Reinforced Polymer for Cable Structures—A Review

4. World’s first large bridge fully relying on carbon fiber reinforced polymer hangers;Meier;SAMPE J.,2021

5. Küstrin-Kietz–Kostrzyn Oderbrücke

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigating the Mechanical Performance of 3D‐printed Parts;Industrial Strategies and Solutions for 3D Printing;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3