Manipulating Crystallization for Simultaneous Improvement of Impact Strength and Heat Resistance of Plasticized Poly(l-lactic acid) and Poly(butylene succinate) Blends

Author:

Kajornprai Todsapol,Suttiruengwong SupakijORCID,Sirisinha Kalyanee

Abstract

Crystalline morphology and phase structure play a decisive role in determining the properties of polymer blends. In this research, biodegradable blends of poly(l-lactic acid) (PLLA) and poly(butylene succinate) (PBS) have been prepared by melt-extrusion and molded into specimens with rapid cooling. The crystalline morphology (e.g., crystallinity, crystal type and perfection) is manipulated by annealing the molded products from solid-state within a short time. This work emphasizes on the effects of annealing conditions on crystallization and properties of the blends, especially impact toughness and thermal stability. Phase-separation morphology with PBS dispersed particles smaller than 1 μm is created in the blends. The blend properties are successfully dictated by controlling the crystalline morphology. Increasing crystallinity alone does not ensure the enhancement of impact toughness. A great improvement of impact strength and heat resistance is achieved when the PLLA/PBS (80/20) blends are plasticized with 5% medium molecular-weight poly(ethylene glycol), and simultaneously heat-treated at a temperature close to the cold-crystallization of PLLA. The plasticized blend annealed at 92 °C for only 10 min exhibits ten-fold impact strength over the starting PLLA and slightly higher heat distortion temperature. The microscopic study demonstrates the fracture mechanism changes from crazing to shear yielding in this annealed sample.

Funder

National Research Council of Thailand

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3