Crystallization behavior analysis and reducing thermal shrinkage of poly(lactic acid) miscibilized with poly(butylene succinate) film for food packaging

Author:

Jariyasakoolroj Piyawanee12ORCID,Makyarm Kanyanut1,Klairasamee Kanyapat1,Sane Amporn12,Jarupan Lerpong1

Affiliation:

1. Department of Packaging and Materials Technology, Faculty of Agro‐Industry Kasetsart University Bangkok 10900 Thailand

2. Center for Advanced Studies for Agriculture and Food (CASAF), KU Institute for Advanced Studies Kasetsart University Bangkok 10900 Thailand

Abstract

AbstractPoly(lactic acid) (PLA) incorporated with poly(butylene succinate) (PBS) through in situ reactive blending is proposed to retard thermal shrinkage. Succinic anhydride (SA) with varied contents (0.01–0.5 phr) was used as a reactive compatibilizer to enhance miscibility between PLA and PBS phases. The success of PLA chemically bound with PBS chains through simple esterification to form PLA‐SA‐PBS phase is confirmed and quantified using an X‐ray photoelectron spectroscopy technique. The binding energy intensity ratio of ester and hydrocarbon in the PLA/PBS/SA blend with 0.5 phr SA increases for two‐fold, as compared to the PLA/PBS blend. The good interfacial adhesion of PLA and PBS phases is achievable with SA content up to 0.1 phr. In addition, the PLA‐SA‐PBS molecules preferentially support crystallization of PBS phase with increased degree of crystallinity (Xc,PBS) by ~15%. These enhanced homogeneity of PLA/PBS/SA blend and high Xc,PBS trigger the increased tensile strength to 50 MPa, and substantially reduced oxygen permeation coefficient approximately 10 times. Remarkably, the interpenetration of PLA‐SA‐PBS phase in amorphous PLA region coexisting with uniformly dispersed PBS crystals inhibits the PLA chain relaxation and deformation at elevated temperatures, leading to maintaining dimensional stability of PLA/PBS/SA films without shrinkage at 100°C.

Funder

Kasetsart University Research and Development Institute

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3