Destruction of Chitosan and Its Complexes with Cobalt(II) and Copper(II) Tetrasulphophthalocyanines

Author:

Lebedeva Natalia Sh.,Yurina Elena S.,Guseinov Sabir S.,Gubarev Yury A.ORCID,V’yugin Anatoly I.

Abstract

Chitosan is a naturally occurring polysaccharide derived from chitin with a wide range of uses. Phthalocyanines are macroheterocyclic compounds that have a number of useful properties such as coloring and catalytic and antioxidant activity. Phthalocyanines are able to immobilize on chitosan, forming complexes with new useful properties. In this work, we evaluated the ability of phthalocyanines to increase the thermal stability of chitosan. Chitosan (CS) forms complexes with copper(II)-(CuPc) and cobalt(II)-(CoPc) tetrasulphophthalocyanines. The processes of destruction of chitosan (CS) and its complexes with sulphophthalocyanines CuPc and CoPc in oxidizing and inert atmospheres have been studied. It was established that, regardless of the atmosphere composition, the first chemical reactions taking place in the studied systems are elimination reactions. The latter ones in the case of chitosan and complex CS-CuPc lead to the formation of spatially crosslinked polymer structures, and it causes the release of CuPc from the polymer complex. It was found that in the case of CS-CoPc elimination reactions did not lead to the formation of crosslinked polymer structures but caused the destruction of the pyranose rings with a partial release of CoPc. Metallophthalocyanines showed antioxidant properties in the composition of complexes with chitosan, increasing the temperature of the beginning of glycosidic bond cleavage reaction by 30–35 °C in comparison with the similar characteristics for chitosan.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3