Experimental—FEM Study on Effect of Tribological Load Conditions on Wear Resistance of Three-Component High-Strength Solid-Lubricant PI-Based Composites

Author:

Panin Sergey V.ORCID,Luo JiangkunORCID,Buslovich Dmitry G.ORCID,Alexenko Vladislav O.,Kornienko Lyudmila A.,Bochkareva Svetlana A.,Byakov Anton V.

Abstract

The structure, mechanical and tribological properties of the polyimide-based composites reinforced with chopped carbon fibers (CCF) and loaded with solid-lubricant commercially available fillers of various natures were investigated. The metal- and ceramic counterparts were employed for tribological testing. Micron sized powders of PTFE, colloidal graphite and molybdenum disulfide were used for solid lubrication. It was shown that elastic modulus was enhanced by up to 2.5 times, while ultimate tensile strength was increased by up 1.5 times. The scheme and tribological loading conditions exerted the great effect on wear resistance of the composites. In the tribological tests by the ‘pin-on-disk’ scheme, wear rate decreased down to ~290 times for the metal-polymer tribological contact and to ~285 times for the ceramic-polymer one (compared to those for neat PI). In the tribological tests against the rougher counterpart (Ra~0.2 μm, the ‘block-on-ring’ scheme) three-component composites with both graphite and MoS2 exhibited high wear resistance. Under the “block-on-ring” scheme, the possibility of the transfer film formation was minimized, since the large-area counterpart slid against the ‘non-renewable’ surface of the polymer composite (at a ‘shortage’ of solid lubricant particles). On the other hand, graphite and MoS2 particles served as reinforcing inclusions. Finally, numerical simulation of the tribological test according to the ‘block-on-ring’ scheme was carried out. Within the framework of the implemented model, the counterpart roughness level exerted the significantly greater effect on wear rate in contrast to the porosity.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3