Enhancement of EPDM Crosslinked Elastic Properties by Association of Both Covalent and Ionic Networks

Author:

Larrue Chloé,Bounor-Legaré Véronique,Cassagnau Philippe

Abstract

The objective of this study was to replace elastomer crosslinking based on chemical covalent bonds by reversible systems under processing. One way is based on ionic bonds creation, which allows a physical crosslinking while keeping the process reversibility. However, due to the weak elasticity recovery of such a physical network after a long period of compression, the combination of both physical and chemical networks was studied. In that frame, an ethylene-propylene-diene terpolymer grafted with maleic anhydride (EPDM-g-MA) was crosslinked with metal salts and/or dicumyl peroxide (DCP). Thus, the influence of these two types of crosslinking networks and their combination were studied in detail in terms of compression set. The second part of this work was focused on the influence of different metallic salts (KOH, ZnAc2) and the sensitivity to the water of the physical crosslinking network. Finally, the combination of ionic and covalent network allowed combining the processability and better mechanical properties in terms of recovery elasticity. KAc proved to be the best ionic candidate to avoid water degradation of the ionic network and then to preserve the elasticity recovery properties under aging.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference37 articles.

1. Mechanical Properties of Polymers Based on Nanostructure and Morphology;Michler,2016

2. Thermoplastic Elastomers

3. Thermoplastic elastomers;Holden,1987

4. Thermoplastic elastomers based on dynamically vulcanized elastomer-thermoplastic blends;Coran,1997

5. Thermoplastic Elastomeric Rubber-Plastic Blends;Coran,2000

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3