Polyethylene/Polyamide Blends Made of Waste with Compatibilizer: Processing, Morphology, Rheological and Thermo-Mechanical Behavior

Author:

Czarnecka-Komorowska DorotaORCID,Nowak-Grzebyta Jagoda,Gawdzińska KatarzynaORCID,Mysiukiewicz OlgaORCID,Tomasik MałgorzataORCID

Abstract

The aim of this study was to develop a polyethylene/polyamide (R-PE/R-PA) regranulated product made from post-consumer wastes grafted with polyethylene-graft-maleic anhydride (PE-g-MAH) by reactive extrusion in a twin-screw extruder equipped with an external mixing zone. The compatibility effect of PE-g-MAH used as a modifier in R-PE/R-PA blends was evaluated by means of differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA), while the analysis of the chemical structure of this blend was carried out by Fourier transform infrared spectroscopy (FT-IR). The thermal properties, complex viscosity, and selected usage properties of R-PE/R-PA blends compatibilized with PE-g-MAH, i.e., density and water absorption, were evaluated. The morphology of the blends with and without the compatibilizer was observed by scanning electron microscopy. The R-PE/R-PA/MAH blend shows heterogenic structure, which is a result of the chemical reaction in reactive extrusion between functional groups of PE-g-MAH used as modifier and the end groups of R-PA6. The results show that the R-PE/R-PA blend with increased PE-g-MAH content showed increased hardness, stiffness, and ultimate tensile strength due to the increased degree of crystallinity. The increase in crystallinity is proportional to the improvement of the mechanical properties. Moreover, it is shown that 1 wt.% PE-g-MAH added to the R-PE/R-PA waste blend increases the interfacial interactions and compatibility between R-PE and R-PA, resulting in decreased polyamide particle size. Finally, the results show that it is possible to produce good quality regranulated products with advantageous properties and structure from immiscible polymer waste for industrial applications.

Funder

the Ministry of Science and Higher Education of the Republic of Poland

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference57 articles.

1. PlasticsEuropehttps://www.plasticseurope.org/pl/focus-areas/circular-economy

2. Reuse of plastics recovered from solid wastes. Thermal and morphological studies from HDPE/LDPE blends

3. Sustainability design of plastic packaging for the Circular Economy

4. The Problem of Removing Seaweed from the Beaches: Review of Methods and Machines

5. Texts Adopted—A European Strategy for Plastics in a Circular Economyhttps://www.europarl.europa.eu/doceo/document/TA-8-2018-0352_PL.html

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3