Abstract
Herein, we produced a series of ultrahigh molecular weight polyethylene/polypropylene (UHMWPE/PP) blends by elongational-flow-field dominated eccentric rotor extruder (ERE) and shear-flow-field dominated twin screw extruder (TSE) respectively and presented a detailed comparative study on microstructures and tribological properties of UHMWPE/PP by different processing modes. Compared with the shear flow field in TSE, the elongational flow field in ERE facilitates the dispersion of PP in the UHMWPE matrix and promotes the interdiffusion of UHMWPE and PP molecular chains. For the first time, we discovered the presence of the interlayer phase in blends with different processing modes by using Raman mapping inspection. The elongational flow field introduces strong interaction to enable excellent compatibility of UHMWPE and PP and induces more pronounced interlayer phase with respect to the shear flow field, eventually endowing UHMWPE/PP with improved wear resistance. The optimized UHMWPE/PP (85/15) blend processed by ERE displayed higher tensile strength (25.3 MPa), higher elongation at break (341.77%) and lower wear loss of ERE-85/15 (1.5 mg) compared to the blend created by TSE. By systematically investigating the microstructures and mechanical properties of blends, we found that with increased content of PP, the wear mechanism of blends varies from abrasive wear, fatigue wear, to adhesion wear as the dominant mechanism for two processing modes.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
Polymers and Plastics,General Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献