Study on Tribological Characteristics of Ultra-High Molecular Weight Polyethylene under Unsaturated Lubrication of Water and Brine

Author:

Li Wenhao,Wang ZhenhuaORCID,Liu Ningning,Zhang Jinzhu

Abstract

The tribological characteristics of ultra-high molecular weight polyethylene (UHMWPE) under unsaturated lubrication of water and brine were studied. The friction coefficients and wear rates of UHMWPE at different applied loads and sliding speeds were recorded by field tests, and the effects of load and speed on the friction properties of UHMWPE were analyzed. The results showed that under certain liquid drop (about 150–170 mL/h) lubrication, the tribological behaviors of UHMWPE were better than those of dry sliding, and the friction coefficient and wear rate of UHMWPE were reduced by more than 39% and 10% respectively. The lubrication form of UHMWPE gradually transited from saturated lubrication to unsaturated lubrication with the increase in applied load or sliding speed. The evaporation of water caused by frictional heat affected the water content between the surface of UHMWPE and the counterface, which was the main reason for the change in the lubrication form. In the current work, the critical values for the change of lubrication mode were 70 N and 700 r/min for load and speed, respectively, beyond which UHMWPE was in unsaturated lubrication. Under brine-unsaturated lubrication, the anti-friction property of UHMWPE was better than that in water-unsaturated lubrication at high speed because the precipitated salt granules played a ball effect, which was opposite to that under saturated lubrication. The study of the wear resistance with surface profiler showed that the wear rate of UHMWPE under water-unsaturated lubrication was 9% lower than that under brine-unsaturated lubrication at 110 N load. While the wear resistance of UHMWPE under brine-unsaturated lubrication was better than that in water-unsaturated lubrication at high speed, the wear rate of UHMWPE under brine-unsaturated lubrication was 10% lower than that under water-unsaturated lubrication at 1100 r/min speed.

Funder

Major Scientific and Technological Project of the Corps

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3