Phase Transitions in Poly(vinylidene fluoride)/Polymethylene-Based Diblock Copolymers and Blends

Author:

María Nicolás,Maiz JonORCID,Martínez-Tong Daniel E.ORCID,Alegria AngelORCID,Algarni FatimahORCID,Zapzas GeorgeORCID,Hadjichristidis NikosORCID,Müller Alejandro J.ORCID

Abstract

The crystallization and morphology of two linear diblock copolymers based on polymethylene (PM) and poly(vinylidene fluoride) (PVDF) with compositions PM23-b-PVDF77 and PM38-b-PVDF62 (where the subscripts indicate the relative compositions in wt%) were compared with blends of neat components with identical compositions. The samples were studied by SAXS (Small Angle X-ray Scattering), WAXS (Wide Angle X-ray Scattering), PLOM (Polarized Light Optical Microscopy), TEM (Transmission Electron Microscopy), DSC (Differential Scanning Calorimetry), BDS (broadband dielectric spectroscopy), and FTIR (Fourier Transform Infrared Spectroscopy). The results showed that the blends are immiscible, while the diblock copolymers are miscible in the melt state (or very weakly segregated). The PVDF component crystallization was studied in detail. It was found that the polymorphic structure of PVDF was a strong function of its environment. The number of polymorphs and their amount depended on whether it was on its own as a homopolymer, as a block component in the diblock copolymers or as an immiscible phase in the blends. The cooling rate in non-isothermal crystallization or the crystallization temperature in isothermal tests also induced different polymorphic compositions in the PVDF crystals. As a result, we were able to produce samples with exclusive ferroelectric phases at specific preparation conditions, while others with mixtures of paraelectric and ferroelectric phases.

Funder

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Eusko Jaurlaritza

ALBA Synchrotron Facility, Spain

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3