Polyvinylidene Fluoride-Based Metasurface for High-Quality Active Switching and Spectrum Shaping in the Terahertz G-Band

Author:

Danila Octavian

Abstract

We report theoretical investigations performed in the terahertz G-band, in the 228–232 GHz spectral window for a piezoelectrically-responsive ring-cone element metasurface composed of polyvinylidene fluoride (PVDF)/Silicon and PVDF/Silica glass. The choosing of this spectral window is motivated by a multitude of applications in terahertz detection and terahertz imaging, that commonly make use of this band. The uniqueness of the envisioned architecture resides in the combination between the readily-available polyvinylidene fluoride polymer and silicon/silica glass substrates, together with the introduction of an extra degree of freedom, in the form of a ring-cone architecture, and the active control of the geometric sizes through the longitudinal piezoelectric effect exhibited by the polymer. The spectral response of the metasurface is dependent on the combination between the polymer elements and the substrate, and ranges from near-zero absorption switching to a resonant behavior and significant absorption. The interaction between the electromagnetic field and the polymer-based metasurface also modifies the phase of the reflected and transmitted waves over a full 2π range, permitting complete control of the electric field polarization. Moreover, we take advantage of the longitudinal piezoelectric effect of PVDF and analyze the spectrum shaping capability of the polymer-based metasurface. Our analysis highlights the capability of the proposed architecture to achieve complete electric field polarization control, near-zero optical switching and resonant behavior, depending on the geometries and sizes of the architecture elements resulting from construction considerations and from the externally applied voltages through the piezoelectric effect.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3