Effect of Ultrasound Irradiation on the Properties and Sulfur Contents of Blended Very Low-Sulfur Fuel Oil (VLSFO)

Author:

Ju Hae-jiORCID,Jeon Soo-kyung

Abstract

Quality issues concerning very low-sulfur fuel oil (VLSFO) have increased significantly since the IMO sulfur-limit regulation became mandatory in 2020, as most VLSFO is produced by blending high-sulfur fuel oil (HSFO) with VLSFO. For instance, the conversion of VLSFO paraffins (C19 or higher alkanes) into waxes at low temperatures adversely affects cold flow properties. This study investigates the effects of ultrasonication on the chemical composition, dispersion stability, and sulfur content of samples prepared by blending ISO-F-DMA-grade marine gas oil (i.e., VLSFO) and ISO-F-RMG-grade marine heavy oil (i.e., HSFO) in volumetric ratios of 25:75 (BFO1), 50:50 (BFO2), and 75:25 (BFO3). The paraffin content decreased by 19.2% after 120 min of ultrasonic irradiation for BFO1 by 16.8% after 30 min for BFO3. The decrease in the content of high-molecular-weight compounds was faster at higher HSFO content; however, ultrasonication for longer-than-optimal times induced reaggregation, and thus, increased the content of high-molecular-weight compounds and decreased dispersion stability. In addition, ultrasonication did not significantly affect the sulfur content of BFO1 but decreased those of BFO2 (by 19% after 60 min) and BFO3 (by 25% after 30 min). Desulfurization efficiency increased with the increasing content of HSFO, as water present therein acted as an oxidant for oxidative desulfurization.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference42 articles.

1. Green Marine: An environmental program to establish sustainability in marine transportation

2. Environmental regulations in shipping: Policies leaning towards globalization of scrubbers deserve scrutiny

3. Review on impacts of low sulfur regulations on marine fuels and compliance options

4. Health Impacts Associated with Delay of MARPOL Global Sulphur Standard, IMO. MEPC 70/INF 34 https://wwwcdn.imo.org/localresources/en/MediaCentre/HotTopics/Documents/Finland%20study%20on%20health%20benefits.pdf

5. Implication of IMO Emission Regulation on Korean Shipping Companies;Park,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3