FBLS-Based Fusion Method for Unmanned Surface Vessel Positioning Considering Denoising Algorithm

Author:

Wang Qifu,Liu Songtao,Zhang Bingyan,Zhang Chuang

Abstract

Although a USV navigation system is an important application of unmanned systems, combining Inertial Navigation System (INS) with Global Positioning System (GPS) can provide reliable and continuous solutions of positioning and navigation based on its several advantages; the random error characteristics of INS and the instability derived from the GPS signal blockage represent a potential threat to the INS/GPS integration of USV. Under this background, a composition framework based on nonlinear generalization capability of support vector machines (SVM) and multi-resolution ability of wavelet transform is used to solve the difficulty that the INS suffers from the interference of stochastic errors, and the dynamic information of the USV is not influenced. An innovative fuzzy broad learning structure based on the broad learning (BL) method is utilized in the INS/GPS integration of USV, in which the navigation information of INS and GPS are deemed as the input of the Fuzzy Broad Learning System (FBLS) to train the network, and then the trained network of FBLS and navigation information of INS are applied for estimating the optimal navigation solution during the GPS signal blockage. Based on the USV platform, a sea trial was carried out to confirm the validity and feasibility of the proposed method by comparing with existing algorithms for INS/GPS integration. The experimental results show that the proposed approach could achieve the better denoising effect from random errors of INS and provide high-accuracy navigation solutions during GPS signal blockage.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3