Abstract
The primary problem faced by the integrated navigation system based on the inertial navigation system (INS) and global positioning system (GPS) is providing reliable navigation and positioning solutions during GPS failure. Thus, this study proposes an innovative integrated navigation algorithm to address the limitation of precise positioning when GPS fails. First, for the limitation of noise interference in INS, noise reduction technology based on ensemble empirical mode decomposition (EEMD) is proposed to improve the quality of the INS signal and enhance the noise reduction effect. Second, an INS/GPS integrated framework based on the sparrow search algorithm (SSA) and extreme learning machine (ELM) is proposed. During normal GPS conditions, SSA-ELM is used to develop a high-precision prediction model to estimate differences between INS and GPS. When the GPS signal is interrupted, the difference predicted by SSA-ELM is used as the measurement input and the INS is corrected. To confirm the effectiveness of this method, a real ship experiment is conducted with other commonly used methods. The experimental results demonstrate that the proposed method can improve positioning accuracy and reliability when GPS is interrupted.
Funder
Liaoning Revitalization Talents Program
National Key R&D Program of China
Applied Basic Research Plan of Liaoning Province in 2022
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献