Local Defogging Algorithm for the First Frame Image of Unmanned Surface Vehicles Based on a Radar-Photoelectric System

Author:

Yu QingzeORCID,Su Yumin

Abstract

Unmanned surface vehicles frequently encounter foggy weather when performing surface object tracking tasks, resulting in low optical image quality and object recognition accuracy. Traditional defogging algorithms are time consuming and do not meet real-time requirements. In addition, there are problems with oversaturated colors, low brightness, and overexposed areas in the sky. In order to solve the problems mentioned above, this paper proposes a defogging algorithm for the first frame image of unmanned surface vehicles based on a radar-photoelectric system. The algorithm involves the following steps. The first is the fog detection algorithm for sea surface image, which determines the presence of fog. The second is the sea-sky line extraction algorithm which realizes the extraction of the sea-sky line in the first frame image. The third is the object detection algorithm based on the sea-sky line, which extracts the target area near the sea-sky line. The fourth is the local defogging algorithm, which defogs the extracted area to obtain higher quality images. This paper effectively solves the problems above in the sea test and dramatically reduces the calculation time of the defogging algorithm by 86.7%, compared with the dark channel prior algorithm.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-Time Infrared Sea–Sky Line Region Detection in Complex Environment Based on Deep Learning;Journal of Marine Science and Engineering;2024-06-28

2. A sea–sky–line detection method for long wave infrared image based on improved Swin Transformer;Infrared Physics & Technology;2024-05

3. Development and Analysis of Computer Vision Based SSL Detection Technology for Marine Environment;2024 Asia-Pacific Conference on Software Engineering, Social Network Analysis and Intelligent Computing (SSAIC);2024-01-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3