Abstract
To satisfy the requirement of haptic sensibility in rubber such as in the proposed hybrid skin (H-Skin), the authors have demonstrated a new method for solidifying rubber using electrolytic polymerization together with configured magnetic clusters of magnetic compound fluid (MCF) incorporated into the rubber by the application of a magnetic field. However, the rubber and magnetic fluid (MF) involved in the MCF rubber were water-soluble. In addition, the authors have demonstrated the practicability of using electrolytic polymerization with an emulsifier, polyvinyl alcohol (PVA), in which natural rubber (NR) or chloroprene rubber (CR) and silicone rubber (Q) can be mixed as water-soluble and water-insoluble rubbers, respectively. In this study, to enhance production, the feasibility of solidifying rubber by electrolytic polymerization is verified using varied water-insoluble rubber, varied water-insoluble MF, and varied surfactants to aid emulsion polymerization, except in the case of other kinds of rubber and MF which have been demonstrated until recent by the authors. Based on these diverse constituents, the authors propose a consummate fabrication process for multi-layered MCF rubber, which involves porous stocking-like rubber that can be permeated by any liquid. The investigation of this application is presented in the sequential second report.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献