Elucidation of Response and Electrochemical Mechanisms of Bio-Inspired Rubber Sensors with Supercapacitor Paradigm

Author:

Shimada Kunio1ORCID

Affiliation:

1. Faculty of Symbiotic Systems Sciences, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan

Abstract

The electrochemical paradigm of a supercapacitor (SC) is effective for investigating cutting-edge deformable and haptic materials made of magnetic compound fluid (MCF) rubber in order to advance the production of bio-inspired sensors as artificial haptic sensors mimicking human tissues. In the present study, we measure the cyclic voltammetry (CV) profiles and electric properties with electrochemical impedance spectroscopy (EIS) to morphologically evaluate the intrinsic structure of MCF rubber containing fillers and agents. In addition, the electrochemical mechanisms of molecule and particle behavior are theorized using the SC physical framework. The solid-doped fillers in the MCF rubber characterized the behavior of the electrical double-layer capacitor (EDLC). Meanwhile, the liquid agents showed the characteristics of a pseudocapacitor (PC) due to the redox response among the molecules and particles. The potential responses to extraneous stimuli relevant to the EIS properties, categorized as slow adaption (SA), fast adaption (FA), and other type (OT), were also analyzed in terms of the sensory response of the bio-inspired sensor. The categories were based on how the response was induced from the EIS properties. By controlling the EIS properties with different types of doping agents, sensors with various sensory responses become feasible.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3