Abstract
The effect of initial granular structural conditions on load transmission patterns was experimentally investigated. Two types of granular structures were prepared by laminating cylindrical model particles of different diameters, to which photoelastic sheets were attached. Two-dimensional, reflective photoelasticity tests were performed under two granular conditions: (1) a uniform structure without initial defects and (2) with initial local imperfections at the bottom of the granular assembly. Two granular assemblies were tested for uniaxial compressive loading and shallow foundation loading conditions. For macroscopic analyses of the load–displacement relationship, the photoelastic response of individual particles was measured to microscopically observe the distribution of the main contact force chains within each granular assembly. Furthermore, the effect of initial local defects on the bearing capacity of granular assemblies was examined by confirming particle movement and the expansion of initial local defects in the granular assembly via particle image velocimetry (PIV). As a result, a completely different form of internal contact force chain was developed from the beginning of loading to the final failure stage, depending upon whether or not initial local instability existed in the granular assembly. In particular, a significant effect on the bearing capacity was found under shallow foundation loading conditions.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献