Effect of Initial Granular Structure on the Evolution of Contact Force Chains

Author:

Park ,Jung ,Kwak

Abstract

The effect of initial granular structural conditions on load transmission patterns was experimentally investigated. Two types of granular structures were prepared by laminating cylindrical model particles of different diameters, to which photoelastic sheets were attached. Two-dimensional, reflective photoelasticity tests were performed under two granular conditions: (1) a uniform structure without initial defects and (2) with initial local imperfections at the bottom of the granular assembly. Two granular assemblies were tested for uniaxial compressive loading and shallow foundation loading conditions. For macroscopic analyses of the load–displacement relationship, the photoelastic response of individual particles was measured to microscopically observe the distribution of the main contact force chains within each granular assembly. Furthermore, the effect of initial local defects on the bearing capacity of granular assemblies was examined by confirming particle movement and the expansion of initial local defects in the granular assembly via particle image velocimetry (PIV). As a result, a completely different form of internal contact force chain was developed from the beginning of loading to the final failure stage, depending upon whether or not initial local instability existed in the granular assembly. In particular, a significant effect on the bearing capacity was found under shallow foundation loading conditions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3