Comparison of Deep Transfer Learning Models for the Quantification of Photoelastic Images

Author:

Kim Seongmin1ORCID,Nam Boo Hyun1,Jung Young-Hoon1ORCID

Affiliation:

1. Department of Civil Engineering, Kyung Hee University, Yongin 17104, Republic of Korea

Abstract

In the realm of geotechnical engineering, understanding the mechanical behavior of soil particles under external forces is paramount. The main topic of this study is how to use deep learning image analysis techniques, especially transfer learning models like VGG, ResNet, and DenseNet, to look at response images from models of reflective photoelastic soil particles. We applied a total of six transfer learning models to analyze photoelastic response images. We then compared the validation results with existing quantitative evaluation techniques. The researchers identified the most outstanding transfer learning model by comparing the validation results with existing quantitative evaluation techniques using performance metrics such as the coefficient of determination, mean average error, and root mean square error.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Reference49 articles.

1. Frocht, M.M. (1969). Photoelasticity: The Selected Scientific Papers of MM Frocht, Pergamon.

2. Dantu, P. (1957, January 12–24). Contribution à l’étude mécanique et géométrique des milieux pulvérulents. Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, London, UK.

3. Photoelastic method for determination of stress in powdered mass;Wakabayashi;Proceedings of the 7th Japan National Congress for Applied Mechanics,1957

4. Photoelastic verification of a mechanical model for the flow of a granular material;Drescher;J. Mech. Phys. Solids,1972

5. Dyer, M. (1985). Observation of the Stress Distribution in Crushed Glass with Applications to Soil Reinforcement. [Ph.D. Thesis, University of Oxford].

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3