Deep Learning-Based Adaptive Compression and Anomaly Detection for Smart B5G Use Cases Operation

Author:

El Sayed AhmadORCID,Ruiz MarcORCID,Harb Hassan,Velasco LuisORCID

Abstract

The evolution towards next-generation Beyond 5G (B5G) networks will require not only innovation in transport technologies but also the adoption of smarter, more efficient operations of the use cases that are foreseen to be the high consumers of network resources in the next decades. Among different B5G use cases, the Digital Twin (DT) has been identified as a key high bandwidth-demanding use case. The creation and operation of a DT require the continuous collection of an enormous and widely distributed amount of sensor telemetry data which can overwhelm the transport layer. Therefore, the reduction in such transported telemetry data is an essential objective of smart use case operation. Moreover, deep telemetry data analysis, i.e., anomaly detection, can be executed in a hierarchical way to reduce the processing needed to perform such analysis in a centralized way. In this paper, we propose a smart management system consisting of a hierarchical architecture for telemetry sensor data analysis using deep autoencoders (AEs). The system contains AE-based methods for the adaptive compression of telemetry time series data using pools of AEs (called AAC), as well as for anomaly detection in single (called SS-AD) and multiple (called MS-AGD) sensor streams. Numerical results using experimental telemetry data show compression ratios of up to 64% with reconstruction errors of less than 1%, clearly improving upon the benchmark state-of-the-art methods. In addition, fast and accurate anomaly detection is demonstrated for both single and multiple-sensor scenarios. Finally, a great reduction in transport network capacity resources of 50% and more is obtained by smart use case operation for distributed DT scenarios.

Funder

the European Commission Horizon Europe

AEI

ICREA institution

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-Time Anomaly Detection in 5G Networks Through Edge Computing;2024 Third International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS);2024-03-14

2. TCF-Trans: Temporal Context Fusion Transformer for Anomaly Detection in Time Series;Sensors;2023-10-17

3. Comparison of Statistical and Machine Learning-Based Approaches for Telemetry Data Size Reduction;2023 23rd International Conference on Transparent Optical Networks (ICTON);2023-07-02

4. A Comprehensive Survey of Machine Learning Methods for Surveillance Videos Anomaly Detection;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3