Deep learning-based real-time analysis of lightpath optical constellations [Invited]

Author:

Ruiz M.1ORCID,Sequeira D.1ORCID,Velasco L.1ORCID

Affiliation:

1. Universitat Politècnica de Catalunya

Abstract

Optical network automation requires accurate physical layer models, not only for provisioning but also for real-time analysis. In particular, in-phase (I) and quadrature (Q) constellation analysis enables deep understanding of the characteristics of optical connections (lightpaths), e.g., their length. In this paper, we present methods for modeling lightpaths based on deep learning. Specifically, we propose using autoencoders (AEs) and deep neural networks. Models are trained and composed in a sandbox domain with the information received from the network controller and sent to the node agent that uses them to compare the features extracted from the received signal and the expected features returned by the models. We investigate two different use cases for lightpath analysis focused on lightpath length and optical signal power. The results show a remarkable accuracy for the lightpath modeling and length prediction and a noticeable performance of the AEs for unsupervised IQ constellation feature extraction and relevance analysis.

Funder

European Commission

Agencia Estatal de Investigación

Institució Catalana de Recerca i Estudis Avançats

Publisher

Optica Publishing Group

Subject

Computer Networks and Communications

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep-Learning-Assisted Optical Transmitter Fingerprint Identification Based on the Constellation Diagram;IEEE Internet of Things Journal;2024-09-01

2. Applications of the OCATA time domain digital twin: from QoT estimation to failure management;Journal of Optical Communications and Networking;2024-02-01

3. Evaluating the Impact of Machine Learning on Accuracy in Real-Time Data Analysis;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

4. Real-Time Detection of Fiber Bending and/or Optical Filter Shift by Machine-Learning of Tapped Raw Digital Coherent Optical Signals;IEICE Transactions on Communications;2023-11-01

5. Distributed intelligence for pervasive optical network telemetry;Journal of Optical Communications and Networking;2023-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3