Extended Joint Sparsity Reconstruction for Spatial and Temporal ERT Imaging

Author:

Chen Bo,Abascal JuanORCID,Soleimani Manuchehr

Abstract

Electrical resistance tomography (ERT) is an imaging technique to recover the conductivity distribution with boundary measurements via attached electrodes. There are a wide range of applications using ERT for image reconstruction or parameter calculation due to high speed data collection, low cost, and the advantages of being non-invasive and portable. Although ERT is considered a high temporal resolution method, a temporally regularized method can greatly enhance such a temporal resolution compared to frame-by-frame reconstruction. In some of the cases, especially in the industrial applications, dynamic movement of an object is critical. In practice, it is desirable for monitoring and controlling the dynamic process. ERT can determine the spatial conductivity distribution based on previous work, and ERT potentially shows good performance in exploiting temporal information as well. Many ERT algorithms reconstruct images frame by frame, which is not optimal and would assume that the target is static during collection of each data frame, which is inconsistent with the real case. Although spatiotemporal-based algorithms can account for the temporal effect of dynamic movement and can generate better results, there is not that much work aimed at analyzing the performance in the time domain. In this paper, we discuss the performance of a novel spatiotemporal total variation (STTV) algorithm in both the spatial and temporal domain, and Temporal One-Step Tikhonov-based algorithms were also employed for comparison. The experimental results show that the STTV has a faster response time for temporal variation of the moving object. This robust time response can contribute to a much better control process which is the main aim of the new generation of process tomography systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3