Using principal component analysis and elastic net in logistic regression to identify the location of objects in EIT

Author:

Król K,Rymarczyk T,Kozłowski E,Niderla K

Abstract

Abstract This paper presents the research results on the use of machine learning algorithms and electrical tomography to detect moisture in the tank. The article presents methods such as principal component analysis and elastic net in logistic regression, for identifying object locations. Tomographic methods show a spatial image of the interior, not individual points of the examined cross-section. Previous studies have shown that the choice of machine learning model has a significant impact on the quality of the results obtained. Machine learning is more likely to provide accurate tomogram reconstructions than traditional mathematical methods. In this study, linear regression models performed slightly worse than neural networks. A specially developed numerical model was used in this study. The characteristic feature of the analyzed solution is the partition of the modeled object into a set of elements using a specially developed mesh.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference27 articles.

1. The Use of Time Frequency Moments as Inputs of LSTM Network for ECG Signal Classification;Kłosowski;Electronics,2020

2. Wearable mobile measuring device based on electrical tomography;Rymarczyk;Przegląd Elektrotechniczny,2019

3. Area monitoring using the ERT method with multisensor electrodes;Rymarczyk;Przegląd Elektrotechniczny,2019

4. A quantitative ultrasonic travel-time tomography system for investigation of liquid compounds elaborations in industrial processes;Koulountzios;Sensors,2019

5. Maintenance of industrial reactors based on deep learning driven ultrasound tomography;Kłosowski;Eksploatacja i Niezawodnosc-Maintenance and Reliability,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3