Expediting the Cost Estimation Process for Aged-Housing Renovation Projects Using a Probabilistic Deep Learning Approach

Author:

Kim Jun,Cha Hee Sung

Abstract

Since the early 1980s, the Korean government has rapidly boosted residential buildings to cope with substantial housing shortages. However, as buildings have been aging simultaneously, the performance of a large number of residential buildings has deteriorated. A government plan to upgrade poor housing performance through renovation is being adopted. However, the difficulty of accurate construction cost prediction in the early stages has a negative effect on the renovation process. Specifically, the relationship between renovation design elements and construction work items has not been clearly revealed. Thus, construction experts use premature intuition to predict renovation costs, giving rise to a large difference between planned and actual costs. In this study, a new approach links the renovation design elements with construction work items. Specifically, it effectively quantifies design factors and applies data-driven estimation using the simulation-based deep learning (DL) approach. This research contributes the following. First, it improves the reliability of cost prediction for a data-scarce renovation project. Moreover, applying this novel approach greatly reduces the time and effort required for cost estimation. Second, several design alternatives were effectively examined in an earlier stage of construction, leading to prompt decision-making for homeowners. Third, rapid decision-making can provide a more sustainable living environment for residents. With this novel approach, stakeholders can avoid a prolonged economic evaluation by selecting a better design alternative, and thus can maintain their property holdings in a smarter way.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3