Incorporating Vegetation Type Transformation with NDVI Time-Series to Study the Vegetation Dynamics in Xinjiang

Author:

Lan Shengxin,Dong Zuoji

Abstract

Time-series normalized difference vegetation index (NDVI) is commonly used to conduct vegetation dynamics, which is an important research topic. However, few studies have focused on the relationship between vegetation type and NDVI changes. We investigated changes in vegetation in Xinjiang using linear regression of time-series MOD13Q1 NDVI data from 2001 to 2020. MCD12Q1 vegetation type data from 2001 to 2019 were used to analyze transformations among different vegetation types, and the relationship between the transformation of vegetation type and NDVI was analyzed. Approximately 63.29% of the vegetation showed no significant changes. In the vegetation-changed area, approximately 93.88% and 6.12% of the vegetation showed a significant increase and decrease in NDVI, respectively. Approximately 43,382.82 km2 of sparse vegetation and 25,915.44 km2 of grassland were transformed into grassland and cropland, respectively. Moreover, 17.4% of the area with transformed vegetation showed a significant increase in NDVI, whereas 14.61% showed a decrease in NDVI. Furthermore, in areas with NDVI increased, the mean NDVI slopes of pixels in which sparse vegetation transferred to cropland, sparse vegetation transferred to grassland, and grassland transferred to cropland were 9.8 and 3.2 times that of sparse vegetation, and 1.97 times that of grassland, respectively. In areas with decreased NDVI, the mean NDVI slopes of pixels in which cropland transferred to sparse vegetation, grassland transferred to sparse vegetation were 1.75 and 1.36 times that of sparse vegetation, respectively. The combination of vegetation type transformation NDVI time-series can assist in comprehensively understanding the vegetation change characteristics.

Funder

The Science and Technology Bureau of Altay Region in Yili Kazak Autonomous Prefecture

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3