Research on Rice Fields Extraction by NDVI Difference Method Based on Sentinel Data

Author:

Tian Jinglian123,Tian Yongzhong123ORCID,Cao Yan123,Wan Wenhao123,Liu Kangning4

Affiliation:

1. Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China

2. Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China

3. Daotian Science and Technology Limited Company, Chongqing 400700, China

4. Chongqing Geomatics and Remote Sensing Center, Chongqing 400715, China

Abstract

To meet the challenge of food security, it is necessary to obtain information about rice fields accurately, quickly and conveniently. In this study, based on the analysis of existing rice fields extraction methods and the characteristics of intra-annual variation of normalized difference vegetation index (NDVI) in the different types of ground features, the NDVI difference method is used to extract rice fields using Sentinel data based on the unique feature of rice fields having large differences in vegetation between the pre-harvest and post-harvest periods. Firstly, partial correlation analysis is used to study the influencing factors of the rice harvesting period, and a simulation model of the rice harvesting period is constructed by multiple regression analysis with data from 32 sample points. Sentinel data of the pre-harvest and post-harvest periods of rice fields are determined based on the selected rice harvesting period. The NDVI values of the rice fields are calculated for both the pre-harvest and post-harvest periods, and 33 samples of the rice fields are selected from the high-resolution image. The threshold value for rice field extraction is determined through statistical analysis of the NDVI difference in the sample area. This threshold was then utilized to extract the initial extent of rice fields. Secondly, to address the phenomenon of the “water edge effect” in the initial data, the water extraction method based on the normalized difference water index (NDWI) is used to remove the pixels of water edges. Finally, the extraction results are verified and analyzed for accuracy. The study results show that: (1) The rice harvesting period is significantly correlated with altitude and latitude, with coefficients of 0.978 and 0.922, respectively, and the simulation model of the harvesting period can effectively determine the best period of remote sensing images needed to extract rice fields; (2) The NDVI difference method based on sentinel data for rice fields extraction is excellent; (3) The mixed pixels have a large impact on the accuracy of rice fields extraction, due to the water edge effect. Combining NDWI can effectively reduce the water edge effect and significantly improve the accuracy of rice field extraction.

Funder

Key Special Project on Protection and Restoration of Typical Fragile Ecosystems

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference50 articles.

1. Tiwari, S., Vaish, B., and Singh, P. (2017). Climate Change and Environmental Concerns: Breakthroughs in Research and Practice, IGI Global.

2. An automated rice mapping method based on flooding signals in synthetic aperture radar time series;Zhan;Remote Sens. Environ.,2020

3. Tang, L., Risalat, H., Cao, R., Hu, Q., Pan, X., Hu, Y., and Zhang, G. (2022). Food Security in China: A Brief View of Rice Production in Recent 20 Years. Foods, 11.

4. Analysis of Characteristics of Temporal and Spatial Variation of Rice Production in the World;Zhu;China Rice,2021

5. Monitoring rice crop and yield estimation with Sentinel-2 data;Angelats;Field Crops Res.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3