Simulation of Inclusion Particle Motion Behavior under Interfacial Tension in Continuous Casting Mold

Author:

Siddiqui Md Irfanul HaqueORCID,Albaqami Ayidh,Arifudin Latif,Alluhydan Khalid,Alnaser Ibrahim AbdullahORCID

Abstract

Inclusions entrapped by the solidifying front during continuous casting adversely affect the properties of the final steel products. In this study, we investigated the effect of the interfacial tension due to surfactant concentration, particularly sulfur, on alumina inclusion motion behavior during molten steel solidification in a continuous casting mold. A two-dimensional numerical model was developed in Ansys Fluent software to simulate the inclusion motion in a continuous casting mold. Further, the impacts of different values of the alumina inclusion diameter, sulfur concentration, and melt temperature were studied to understand the inclusion motion behavior. The inclusion diameter affected the inclusion distribution throughout the domain. The alumina inclusion entrapment percentage varied in the case of sulfur mixing (using an empirical relationship for modeling). It was found that the removal percentage varied according to the sulfur concentration. The addition of sulfur at concentrations from 10 ppm to 70 ppm resulted in a 4% increase in the removal of alumina inclusions (trapped in the solidifying shell), except for the 100-ppm case. Smaller-sized inclusion particles had a 25% higher chance of entrapment at the top level of the mold. Under the effect of a higher surface tension gradient between inclusions and the melt, the predicted findings show that inclusions were vulnerable to engulfment by the solidification front.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3