Impact of Thermal Radiation and Heat Source/Sink on MHD Time-Dependent Thin-Film Flow of Oldroyed-B, Maxwell, and Jeffry Fluids over a Stretching Surface

Author:

Khan Abdul Samad,Nie Yufeng,Shah ZahirORCID

Abstract

In this study paper, we examined the magnetohydrodynamic (MHD) flow of three combined fluids, Maxwell, Jeffry, and Oldroyed- B fluids, with variable heat transmission under the influence of thermal radiation embedded in a permeable medium over a time-dependent stretching sheet. The fluid flow of liquid films was assumed in two dimensions. The fundamental leading equations were changed to a set of differential nonlinear and coupled equations. For this conversion, suitable similarity variables were used. An optimal tactic was used to acquire the solution of the modeled problems. The convergence of the technique has been shown numerically. The obtained analytical and numerical consequences are associated graphically and tabulated. An excellent agreement was obtained between the homotropy analysis method (HAM) and numerical methods. The variation of the skin friction and Nusslet number and their influence on the temperature and concentration profiles were scrutinized. The influence of the thermal radiation, unsteadiness effect, and MHD were the main focus of this study. Furthermore, for conception to be physically demonstrated, the entrenched parameters are discussed graphically in detail along with their effect on liquid film flow.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3